博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Kubernetes Scheduler源码分析
阅读量:5741 次
发布时间:2019-06-18

本文共 20323 字,大约阅读时间需要 67 分钟。

hot3.png

本文是对Kubernetes 1.5的Scheduler源码层面的剖析,包括对应的源码目录结构分析、kube-scheduler运行机制分析、整体代码流程图、核心代码走读分析等内容。阅读本文前,请先了解。

Kubernetes源码目录结构分析

Kubernetes Scheduler是作为kubernetes的一个plugin来设计的,这种可插拔的设计极大方便用户自定义调度算法,在不同的公司,通常大家对调度的需求是不同的,自定义调度是很常见的。

Scheduler的源码主要在k8s.io/kubernetes/plugin/目录下,其中两个目录cmd/scheduler和pkg/scheduler分别定义了kube-scheduler command的参数封装和app启动运行和scheduler的具体内部实现。具体的目录结构分析如下所示。

k8s.io/kubernetes/plugin/.├── cmd│   └── kube-scheduler          // kube-scheduler command的相关代码│       ├── app                 // kube-scheduler app的启动│       │   ├── options         │       │   │   └── options.go  // 封装SchedulerServer对象和AddFlags方法│       │   └── server.go       // 定义SchedulerServer的config封装和Run方法│       └── scheduler.go        // kube-scheduler main方法入口└── pkg    ├── scheduler               // scheduler后端核心代码    │   ├── algorithm    │   │   ├── doc.go    │   │   ├── listers.go      // 定义NodeLister和PodLister等Interface    │   │   ├── predicates      // 定义kubernetes自带的Predicates Policies的Function实现    │   │   │   ├── error.go    │   │   │   ├── metadata.go    │   │   │   ├── predicates.go   // 自带Predicates Policies的主要实现    │   │   │   ├── predicates_test.go    │   │   │   ├── utils.go    │   │   │   └── utils_test.go    │   │   ├── priorities      // 定义kubernetes自带的Priorities Policies的Function实现    │   │   │   ├── balanced_resource_allocation.go    // defaultProvider - BalancedResourceAllocation    │   │   │   ├── balanced_resource_allocation_test.go    │   │   │   ├── image_locality.go    // defaultProvider - ImageLocalityPriority    │   │   │   ├── image_locality_test.go    │   │   │   ├── interpod_affinity.go   // defaultProvider - InterPodAffinityPriority    │   │   │   ├── interpod_affinity_test.go    │   │   │   ├── least_requested.go  // defaultProvider - LeastRequestedPriority    │   │   │   ├── least_requested_test.go     │   │   │   ├── metadata.go         // priorityMetadata定义    │   │   │   ├── most_requested.go   // defaultProvider - MostRequestedPriority    │   │   │   ├── most_requested_test.go    │   │   │   ├── node_affinity.go    // defaultProvider - NodeAffinityPriority    │   │   │   ├── node_affinity_test.go    │   │   │   ├── node_label.go       // 当policy.Argument.LabelPreference != nil时,会注册该Policy    │   │   │   ├── node_label_test.go    │   │   │   ├── node_prefer_avoid_pods.go  // defaultProvider - NodePreferAvoidPodsPriority     │   │   │   ├── node_prefer_avoid_pods_test.go    │   │   │   ├── selector_spreading.go     // defaultProvider - SelectorSpreadPriority    │   │   │   ├── selector_spreading_test.go    │   │   │   ├── taint_toleration.go      // defaultProvider - TaintTolerationPriority    │   │   │   ├── taint_toleration_test.go    │   │   │   ├── test_util.go    │   │   │   └── util                // 工具类    │   │   │       ├── non_zero.go    │   │   │       ├── topologies.go    │   │   │       └── util.go    │   │   ├── scheduler_interface.go    // 定义SchedulerExtender和ScheduleAlgorithm Interface    │   │   ├── scheduler_interface_test.go    │   │   └── types.go               // 定义了Predicates和Priorities Algorithm要实现的方法类型(FitPredicate, PriorityMapFunction)    │   ├── algorithmprovider          // algorithm-provider参数配置的项    │   │   ├── defaults        │   │   │   ├── compatibility_test.go    │   │   │   └── defaults.go         // "DefaultProvider"的实现    │   │   ├── plugins.go            // 空,预留自定义    │   │   └── plugins_test.go    │   ├── api                       // 定义Scheduelr API接口和对象,用于SchedulerExtender处理来自HTTPExtender的请求。    │   │   ├── latest    │   │   │   └── latest.go    │   │   ├── register.go    │   │   ├── types.go              // 定义Policy, PredicatePolicy,PriorityPolicy等    │   │   ├── v1    │   │   │   ├── register.go    │   │   │   └── types.go    │   │   └── validation    │   │       ├── validation.go    // 验证Policy的定义是否合法    │   │       └── validation_test.go    │   ├── equivalence_cache.go    //     │   ├── extender.go               // 定义HTTPExtender的新建以及对应的Filter和Prioritize方法来干预预选和优选    │   ├── extender_test.go    │   ├── factory                    // 根据配置的Policies注册和匹配到对应的预选(FitPredicateFactory)和优选(PriorityFunctionFactory2)函数    │   │   ├── factory.go             // 核心是定义ConfigFactory来工具配置完成scheduler的封装函数,最关键的CreateFromConfig和CreateFromKeys    │   │   ├── factory_test.go    │   │   ├── plugins.go             // 核心是定义注册自定义预选和优选Policy的方法    │   │   └── plugins_test.go    │   ├── generic_scheduler.go        // 定义genericScheduler,其Schedule(...)方法作为调度执行的真正开始的地方    │   ├── generic_scheduler_test.go    │   ├── metrics                    // 支持注册metrics到Prometheus    │   │   └── metrics.go    │   ├── scheduler.go                // 定义Scheduler及Run(),核心的scheduleOne()方法也在此,scheduleOne()一个完成的调度流程,包括或许待调度Pod、调度、Bind等    │   ├── scheduler_test.go    │   ├── schedulercache           │   │   ├── cache.go               // 定义schedulerCache对Pod,Node,以及Bind的CURD,以及超时维护等工作    │   │   ├── cache_test.go    │   │   ├── interface.go           // schedulerCache要实现的Interface    │   │   ├── node_info.go          // 定义NodeInfo及其相关Opertation    │   │   └── util.go    │   └── testing    │       ├── fake_cache.go    │       └── pods_to_cache.go

Kube-scheduler运行机制分析

  1. kube-scheduler作为kubernetes master上一个单独的进程提供调度服务,通过--master指定kube-api-server的地址,用来watch pod和node和调用api server bind接口完成node和pod的Bind操作。

  2. kube-scheduler中维护了一个FIFO类型的PodQueue cache,新创建的Pod都会被ConfigFactory watch到,被添加到该PodQueue中,每次调度都从该PodQueue中getNextPod作为即将调度的Pod。

  3. 获取到待调度的Pod后,就执行AlgorithmProvider配置Algorithm的Schedule方法进行调度,整个调度过程分两个关键步骤:Predicates和Priorities,最终选出一个最适合该Pod借宿的Node返回。

  4. 更新SchedulerCache中Pod的状态(AssumePod),标志该Pod为scheduled,并更新到最有NodeInfo中。

  5. 调用api server的Bind接口,完成node和pod的Bind操作,如果Bind失败,从SchedulerCache中删除上一步中已经Assumed的Pod。

Kubernetes Scheduler代码流程图

由于图片布局较大,请下载到本地放大查看。 这里写图片描述

Kubernetes Scheduler核心代码走读分析

Scheduler的main入口如下,负责创建SchedulerServer和启动。

plugin/cmd/kube-scheduler/scheduler.gofunc main() {	s := options.NewSchedulerServer()	s.AddFlags(pflag.CommandLine)	flag.InitFlags()	logs.InitLogs()	defer logs.FlushLogs()	verflag.PrintAndExitIfRequested()	if err := app.Run(s); err != nil {		glog.Fatalf("scheduler app failed to run: %v", err)	}}

kuber-scheduler的参数说明在options中定义如下:

plugin/cmd/kube-scheduler/app/options/options.go// AddFlags adds flags for a specific SchedulerServer to the specified FlagSetfunc (s *SchedulerServer) AddFlags(fs *pflag.FlagSet) {	fs.Int32Var(&s.Port, "port", s.Port, "The port that the scheduler's http service runs on")	fs.StringVar(&s.Address, "address", s.Address, "The IP address to serve on (set to 0.0.0.0 for all interfaces)")	fs.StringVar(&s.AlgorithmProvider, "algorithm-provider", s.AlgorithmProvider, "The scheduling algorithm provider to use, one of: "+factory.ListAlgorithmProviders())	fs.StringVar(&s.PolicyConfigFile, "policy-config-file", s.PolicyConfigFile, "File with scheduler policy configuration")	fs.BoolVar(&s.EnableProfiling, "profiling", true, "Enable profiling via web interface host:port/debug/pprof/")	fs.BoolVar(&s.EnableContentionProfiling, "contention-profiling", false, "Enable lock contention profiling, if profiling is enabled")	fs.StringVar(&s.Master, "master", s.Master, "The address of the Kubernetes API server (overrides any value in kubeconfig)")	fs.StringVar(&s.Kubeconfig, "kubeconfig", s.Kubeconfig, "Path to kubeconfig file with authorization and master location information.")	fs.StringVar(&s.ContentType, "kube-api-content-type", s.ContentType, "Content type of requests sent to apiserver.")	fs.Float32Var(&s.KubeAPIQPS, "kube-api-qps", s.KubeAPIQPS, "QPS to use while talking with kubernetes apiserver")	fs.Int32Var(&s.KubeAPIBurst, "kube-api-burst", s.KubeAPIBurst, "Burst to use while talking with kubernetes apiserver")	fs.StringVar(&s.SchedulerName, "scheduler-name", s.SchedulerName, "Name of the scheduler, used to select which pods will be processed by this scheduler, based on pod's annotation with key 'scheduler.alpha.kubernetes.io/name'")	fs.IntVar(&s.HardPodAffinitySymmetricWeight, "hard-pod-affinity-symmetric-weight", api.DefaultHardPodAffinitySymmetricWeight,		"RequiredDuringScheduling affinity is not symmetric, but there is an implicit PreferredDuringScheduling affinity rule corresponding "+			"to every RequiredDuringScheduling affinity rule. --hard-pod-affinity-symmetric-weight represents the weight of implicit PreferredDuringScheduling affinity rule.")	fs.StringVar(&s.FailureDomains, "failure-domains", api.DefaultFailureDomains, "Indicate the \"all topologies\" set for an empty topologyKey when it's used for PreferredDuringScheduling pod anti-affinity.")	leaderelection.BindFlags(&s.LeaderElection, fs)	config.DefaultFeatureGate.AddFlag(fs)}

server.Run方法是cmd/kube-scheduler中最重要的方法:

  • 负责config的生成。
  • 并根据config创建sheduler对象。
  • 启动HTTP服务,提供/debug/pprof http接口方便进行性能数据收集调优,提供/metrics http接口以供prometheus收集监控数据。
  • kube-scheduler自选举完成后立刻开始循环执行scheduler.Run进行调度。
plugin/cmd/kube-scheduler/app/server.go:75// Run runs the specified SchedulerServer.  This should never exit.func Run(s *options.SchedulerServer) error {	...	config, err := createConfig(s, kubecli)	...	sched := scheduler.New(config)	go startHTTP(s)	run := func(_ <-chan struct{}) {		sched.Run()		select {}	}	...	leaderelection.RunOrDie(leaderelection.LeaderElectionConfig{		Lock:          rl,		LeaseDuration: s.LeaderElection.LeaseDuration.Duration,		RenewDeadline: s.LeaderElection.RenewDeadline.Duration,		RetryPeriod:   s.LeaderElection.RetryPeriod.Duration,		Callbacks: leaderelection.LeaderCallbacks{			OnStartedLeading: run,			OnStoppedLeading: func() {				glog.Fatalf("lost master")			},		},	})	...}

开始进入Scheduler.Run的逻辑,启动goroutine,循环反复执行Scheduler.scheduleOne方法,直到收到shut down scheduler的信号。

Scheduler.scheduleOne开始真正的调度逻辑,每次负责一个Pod的调度:

  • 从PodQueue中获取一个Pod。
  • 执行对应Algorithm的Schedule,进行预选和优选。
  • AssumePod
  • Bind Pod, 如果Bind Failed,ForgetPod。
plugin/pkg/scheduler/scheduler.go:86// Run begins watching and scheduling. It starts a goroutine and returns immediately.func (s *Scheduler) Run() {	go wait.Until(s.scheduleOne, 0, s.config.StopEverything)}func (s *Scheduler) scheduleOne() {	pod := s.config.NextPod()	...	dest, err := s.config.Algorithm.Schedule(pod, s.config.NodeLister)	...	assumed := *pod	assumed.Spec.NodeName = dest	if err := s.config.SchedulerCache.AssumePod(&assumed); err != nil {		...		return	}	go func() {		...		b := &v1.Binding{			ObjectMeta: v1.ObjectMeta{Namespace: pod.Namespace, Name: pod.Name},			Target: v1.ObjectReference{				Kind: "Node",				Name: dest,			},		}		...		err := s.config.Binder.Bind(b)		if err != nil {			glog.V(1).Infof("Failed to bind pod: %v/%v", pod.Namespace, pod.Name)			if err := s.config.SchedulerCache.ForgetPod(&assumed); err != nil {				...			return		}		}()}

下面是Schedule Algorithm要实现的Schedule接口:

plugin/pkg/scheduler/algorithm/scheduler_interface.go:41// ScheduleAlgorithm is an interface implemented by things that know how to schedule pods onto machines.type ScheduleAlgorithm interface {	Schedule(*v1.Pod, NodeLister) (selectedMachine string, err error)}

genericScheduler作为一个默认Scheduler,当然也必须实现上述接口:

plugin/pkg/scheduler/generic_scheduler.go:89func (g *genericScheduler) Schedule(pod *v1.Pod, nodeLister algorithm.NodeLister) (string, error) {	// 从cache中获取可被调度的Nodes	...	nodes, err := nodeLister.List()	...	// 开始预选	trace.Step("Computing predicates")	filteredNodes, failedPredicateMap, err := findNodesThatFit(pod, g.cachedNodeInfoMap, nodes, g.predicates, g.extenders, g.predicateMetaProducer)		...	// 开始优选打分	trace.Step("Prioritizing")	metaPrioritiesInterface := g.priorityMetaProducer(pod, g.cachedNodeInfoMap)	priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)	...	// 如果优选出多个Node,则随机选择一个Node作为最佳Node返回	trace.Step("Selecting host")	return g.selectHost(priorityList)}// findNodesThatFit是预选的入口func findNodesThatFit(	pod *v1.Pod,	nodeNameToInfo map[string]*schedulercache.NodeInfo,	nodes []*v1.Node,	predicateFuncs map[string]algorithm.FitPredicate,	extenders []algorithm.SchedulerExtender,	metadataProducer algorithm.MetadataProducer,) ([]*v1.Node, FailedPredicateMap, error) {	var filtered []*v1.Node	failedPredicateMap := FailedPredicateMap{}	if len(predicateFuncs) == 0 {		filtered = nodes	} else {		...		// checkNode会调用podFitsOnNode完成配置的所有Predicates Policies对该Node的检查。		checkNode := func(i int) {			nodeName := nodes[i].Name			fits, failedPredicates, err := podFitsOnNode(pod, meta, nodeNameToInfo[nodeName], predicateFuncs)			...		}				// 根据nodes数量,启动最多16个个goroutine worker执行checkNode方法		workqueue.Parallelize(16, len(nodes), checkNode)		filtered = filtered[:filteredLen]		if len(errs) > 0 {			return []*v1.Node{}, FailedPredicateMap{}, errors.NewAggregate(errs)		}	}	// 如果配置了Extender,则执行Extender的Filter逻辑再次进行甩选。	if len(filtered) > 0 && len(extenders) != 0 {		for _, extender := range extenders {			filteredList, failedMap, err := extender.Filter(pod, filtered)			...		}	}	return filtered, failedPredicateMap, nil}// 循环执行所有配置的Predicates Polic对应的predicateFunc。func podFitsOnNode(pod *v1.Pod, meta interface{}, info *schedulercache.NodeInfo, predicateFuncs map[string]algorithm.FitPredicate) (bool, []algorithm.PredicateFailureReason, error) {	var failedPredicates []algorithm.PredicateFailureReason	for _, predicate := range predicateFuncs {		fit, reasons, err := predicate(pod, meta, info)		...	}	return len(failedPredicates) == 0, failedPredicates, nil}// 根据所有配置到Priorities Policies对所有预选后的Nodes进行优选打分// 每个Priorities policy对每个node打分范围为0-10分,分越高表示越合适func PrioritizeNodes(	pod *v1.Pod,	nodeNameToInfo map[string]*schedulercache.NodeInfo,	meta interface{},	priorityConfigs []algorithm.PriorityConfig,	nodes []*v1.Node,	extenders []algorithm.SchedulerExtender,) (schedulerapi.HostPriorityList, error) {		...	// 对单个node遍历所有的Priorities Policies,得到每个node每个policy打分的二维数据数据	processNode := func(index int) {		nodeInfo := nodeNameToInfo[nodes[index].Name]		var err error		for i := range priorityConfigs {			if priorityConfigs[i].Function != nil {				continue			}			results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)			if err != nil {				appendError(err)				return			}		}	}		// 根据nodes数量,启动最多16个goroutine worker执行processNode方法	workqueue.Parallelize(16, len(nodes), processNode)		// 遍历所有配置的Priorities policies,如果某个policy配置了Reduce,则执行对应的Reduce,更新result[node][policy]得分	for i, priorityConfig := range priorityConfigs {		if priorityConfig.Reduce == nil {			continue		}		wg.Add(1)		go func(index int, config algorithm.PriorityConfig) {			defer wg.Done()			if err := config.Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {				appendError(err)			}		}(i, priorityConfig)	}		// Wait for all computations to be finished.	wg.Wait()	...	// 对得分进行加权求和得到最终分数	result := make(schedulerapi.HostPriorityList, 0, len(nodes))	// TODO: Consider parallelizing it.	for i := range nodes {		result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})		for j := range priorityConfigs {			result[i].Score += results[j][i].Score * priorityConfigs[j].Weight		}	}	// 如果配置了Extender,则再执行Extender的优选打分方法Extender.Prioritize	if len(extenders) != 0 && nodes != nil {		combinedScores := make(map[string]int, len(nodeNameToInfo))		for _, extender := range extenders {			wg.Add(1)			go func(ext algorithm.SchedulerExtender) {				defer wg.Done()				prioritizedList, weight, err := ext.Prioritize(pod, nodes)				...			}(extender)		}						// wait for all go routines to finish		wg.Wait()				// 执行combinedScores,将非Extender优选后的node得分再次经过Extender的优选打分排序		for i := range result {			result[i].Score += combinedScores[result[i].Host]		}	}	...}

具体的Predicate Policy对应的PredicateFunc都定义在plugin/pkg/scheduler/algorithm/predicates/predicates.go中,下面是CheckNodeMemoryPressurePredicate的定义。

plugin/pkg/scheduler/algorithm/predicates/predicates.go:1202// CheckNodeMemoryPressurePredicate checks if a pod can be scheduled on a node// reporting memory pressure condition.func CheckNodeMemoryPressurePredicate(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (bool, []algorithm.PredicateFailureReason, error) {	var podBestEffort bool	if predicateMeta, ok := meta.(*predicateMetadata); ok {		podBestEffort = predicateMeta.podBestEffort	} else {		// We couldn't parse metadata - fallback to computing it.		podBestEffort = isPodBestEffort(pod)	}	// pod is not BestEffort pod	if !podBestEffort {		return true, nil, nil	}	// is node under presure?	if nodeInfo.MemoryPressureCondition() == v1.ConditionTrue {		return false, []algorithm.PredicateFailureReason{ErrNodeUnderMemoryPressure}, nil	}	return true, nil, nil}

具体的Priorities Policy对应的PriorityFunc都定义在plugin/pkg/scheduler/algorithm/priorities/*.go中,下面是MostRequestedPriority的定义。

plugin/pkg/scheduler/algorithm/priorities/most_requested.go:33// MostRequestedPriority is a priority function that favors nodes with most requested resources.// It calculates the percentage of memory and CPU requested by pods scheduled on the node, and prioritizes// based on the maximum of the average of the fraction of requested to capacity.// Details: (cpu(10 * sum(requested) / capacity) + memory(10 * sum(requested) / capacity)) / 2func MostRequestedPriorityMap(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {	var nonZeroRequest *schedulercache.Resource	if priorityMeta, ok := meta.(*priorityMetadata); ok {		nonZeroRequest = priorityMeta.nonZeroRequest	} else {		// We couldn't parse metadatat - fallback to computing it.		nonZeroRequest = getNonZeroRequests(pod)	}	return calculateUsedPriority(pod, nonZeroRequest, nodeInfo)}

kubernetes默认给kube-scheduler配置了DefaultProvider。DefaultProvider配置了哪些Predicates和Priorities Policies呢?这些都定义在plugin/pkg/scheduler/algorithmprovider/defaults/defaults.go中,如下所示:

plugin/pkg/scheduler/algorithmprovider/defaults/defaults.go:205// DefaultProvider配置的默认Predicates Policiesfunc defaultPredicates() sets.String {	return sets.NewString(		// Fit is determined by volume zone requirements.		factory.RegisterFitPredicateFactory(			"NoVolumeZoneConflict",			func(args factory.PluginFactoryArgs) algorithm.FitPredicate {				return predicates.NewVolumeZonePredicate(args.PVInfo, args.PVCInfo)			},		),		...		// Fit is determined by non-conflicting disk volumes.		factory.RegisterFitPredicate("NoDiskConflict", predicates.NoDiskConflict),		// GeneralPredicates are the predicates that are enforced by all Kubernetes components		// (e.g. kubelet and all schedulers)		factory.RegisterFitPredicate("GeneralPredicates", predicates.GeneralPredicates),		// Fit is determined based on whether a pod can tolerate all of the node's taints		factory.RegisterFitPredicate("PodToleratesNodeTaints", predicates.PodToleratesNodeTaints),		// Fit is determined by node memory pressure condition.		factory.RegisterFitPredicate("CheckNodeMemoryPressure", predicates.CheckNodeMemoryPressurePredicate),		// Fit is determined by node disk pressure condition.		factory.RegisterFitPredicate("CheckNodeDiskPressure", predicates.CheckNodeDiskPressurePredicate),	)}// DefaultProvider配置的默认Priorities Policiesfunc defaultPriorities() sets.String {	return sets.NewString(		// spreads pods by minimizing the number of pods (belonging to the same service or replication controller) on the same node.		factory.RegisterPriorityConfigFactory(			"SelectorSpreadPriority",			factory.PriorityConfigFactory{				Function: func(args factory.PluginFactoryArgs) algorithm.PriorityFunction {					return priorities.NewSelectorSpreadPriority(args.ServiceLister, args.ControllerLister, args.ReplicaSetLister)				},				Weight: 1,			},		),		...		// TODO: explain what it does.		factory.RegisterPriorityFunction2("TaintTolerationPriority", priorities.ComputeTaintTolerationPriorityMap, priorities.ComputeTaintTolerationPriorityReduce, 1),	)}

上面核心代码的走读分析,请结合上一节Kubernetes Scheduler代码流程图进行阅读。相信读到这里,你对整个scheduler的代码已经有一定的理解了。

总结

  • kube-scheduler作为kubernetes master上一个单独的进程提供调度服务,通过–master指定kube-api-server的地址,用来watch pod和node和调用api server bind接口完成node和pod的Bind操作。

  • kube-scheduler中维护了一个FIFO类型的PodQueue cache,新创建的Pod都会被ConfigFactory watch到,被添加到该PodQueue中,每次调度都从该PodQueue中getNextPod作为即将调度的Pod。

  • 获取到待调度的Pod后,就执行AlgorithmProvider配置Algorithm的Schedule方法进行调度,整个调度过程分两个关键步骤:Predicates和Priorities,最终选出一个最适合该Pod借宿的Node返回。

  • 更新SchedulerCache中Pod的状态(AssumePod),标志该Pod为scheduled,并更新到最有NodeInfo中。

  • 调用api server的Bind接口,完成node和pod的Bind操作,如果Bind失败,从SchedulerCache中删除上一步中已经Assumed的Pod。

转载于:https://my.oschina.net/jxcdwangtao/blog/826741

你可能感兴趣的文章
java斜体_Java可以指示字体是否为斜体字
查看>>
java共享锁和排他锁的区别_漫话:如何给女朋友解释什么是共享锁和排他锁
查看>>
java 面向对象 博客_JAVA面向对象基础
查看>>
java爬取网易云歌单_GitHub - th720309/163music_spider: 网易云音乐歌单爬取
查看>>
java 非静态方法优势_Java 静态(static)与非静态语句执行顺序
查看>>
java中怎么导入子类中数据_导入所有子类,如Java但在C#中
查看>>
蓝桥杯大赛java组准备_蓝桥杯大赛java组算法类冲刺第一天
查看>>
Java判断是否为垃圾_Java GC如何判断对象是否为垃圾
查看>>
多项式前k项和java_多项式朴素贝叶斯softmax改变
查看>>
java数组只能交换0下标和n_编程练习-只用0交换排序数组
查看>>
java的maxrow_聊聊pg jdbc statement的maxRows参数
查看>>
centos7安装mysql视频教程_centos7安装mysql(完整)
查看>>
php图片赋值,php如何优雅地赋值
查看>>
dz.27z.co index.php,dz7.2 伪静态规则
查看>>
php字符串解析xml文件,PHP通过DOM解析XML文件或者xml字符串_PHP教程
查看>>
matlab corr2原码,Ncorr-二维数字图像校正软件
查看>>
mysql增量,MySQL完全、增量的备份与恢复
查看>>
matlab程序复制出现乱码,matlab代码或中文复制到word就变成乱码怎么办?
查看>>
java writer append,Java StringWriter append()方法
查看>>
动态矩阵 matlab代码,动态矩阵控制
查看>>